

REAL-TIME SMOKE SIMULATION WITH ARTSS

Data Assimilation

03.12.2020 | My Linh Würzburger | Civil Safety Research

Introduction

Research Center Jülich

Institute: Civil Safety

Research

Division: Fire Dynamics

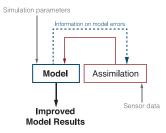
My Linh Würzburger

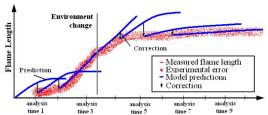
- studies: mathematics and software development
- start as PhD student: September 2019
- PhD Project: Data Assimilation in ARTSS

ARTSS

Accelerator-based Real-Time Smoke Simulator

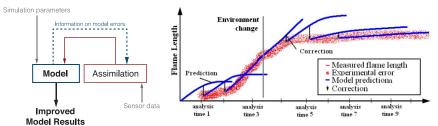
- former name: JuROr (PhD thesis of Anne Küsters)
- open-source software
- release on GitHub (github.com/FireDynamics/ARTSS)


Features


- aim for real-time
- use of graphics board (GPU)
- just smoke, no combustion (yet), radiation or pyrolysis
- "simple" approach

Data Assimilation

Using data to improve simulation results



Jahn, Wolfram & Rein, Guillermo & Torero, Jose. (2009). Data assimilation in enclosure fire dynamics - towards adjoint modelling

Data Assimilation

Using data to improve simulation results

Jahn, Wolfram & Rein, Guillermo & Torero, Jose. (2009). Data assimilation in enclosure fire dynamics - towards adjoint modelling

Real case scenario:

incomplete informations

Data Assimilation in ARTSS

Importance

- fundamental (unknown) parameter
 - how strong does it burn? (heat release rate)
 - where does it burn? (location)
- smoke spread depends on
 - the fuel (eg. furniture)
 - the room structure (eg. door open/closed)
 - the fire protection measurements (eg. sprinkler)

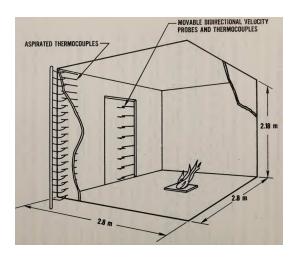
Data Assimilation in ARTSS

Importance

- fundamental (unknown) parameter
 - how strong does it burn? (heat release rate)
 - where does it burn? (location)
- smoke spread depends on
 - the fuel (eg. furniture)
 - the room structure (eg. door open/closed)
 - the fire protection measurements (eg. sprinkler)
- data assimilation can show us
 - if there is a sudden increase/decrease in smoke
 - if there is an underlying stream

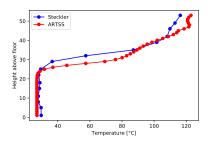
Data Assimilation

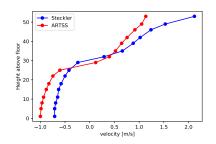
First Concept


comparison with a well documented experiment (Steckler)

- simple attempt
 - reconstruct experimental setting
 - implement interface to integrate data during the running simulation (not time-delayed yet)
 - change model based on a simple attempt (proof of concept)
- 2 time-delayed attempt
 - safe state of simulation
 - reload simulation at time step of sensor data
 - change model [...]
- 3 model-based attempt
 - gradient-based
 - new boundary conditions

Current work


Steckler case in ARTSS



Current work

Steckler case in ARTSS

Contact Information

My Linh Würzburger

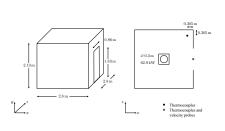
Phone: +49 2461 61-8823

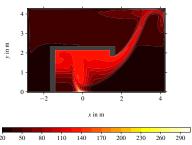
email: m.wuerzburger@fz-juelich.de

https://www.fz-juelich.de/ias/ias-7/

Forschungszentrum Jülich GmbH Institute for Advanced Simulation Civil Safety Research (IAS-7) Wilhelm-Johnen-Straße 52425 Jülich

ARTSS Difference to FDS

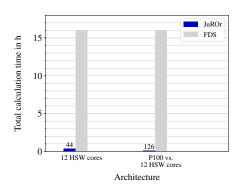

FDS	ARTSS
CFD/LES model	
turbulent, incompressible fluid dynamics	
smoke spread, pyrolysis, radiation, etc.	smoke spread
cartesian grids, rectangular objects (FDM)	
CPU	CPU + GPU
Fortran/MPI/OpenMP	C++/OpenACC
smokeview	Vislt, Paraview
\sim 115 000 lines of code, open source	~18 000 lines of code, open source


Forschungszentrum

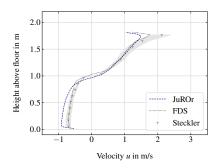
ARTSS - Difference to FDS

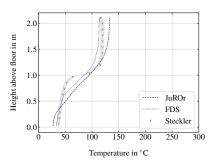
Steckler Experiment

Fire induced flow experiment in a compartment



ARTSS - Difference to FDS


Steckler Experiment - Benchmarking


- 2-socket Intel Xeon HaswellE5-2680 v3 @ 2.5 GHz and2 x 12 cores
- NVIDIA Pascal P100 (PCIe) GPU with 1328 MHz, 12 GB, 56 SMs and a 2-socket Intel Xeon Broadwell E5-2623 v4 @ 2.6 GHz

ARTSS - Difference to FDS

Steckler Experiment - Accuracy

Vertical velocity (at the top) at the center of the doorway

Temperature profile (at the bottom) at the center of the doorway

